首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7389篇
  免费   704篇
  国内免费   1930篇
化学   5966篇
晶体学   81篇
力学   1048篇
综合类   95篇
数学   1558篇
物理学   1275篇
  2024年   13篇
  2023年   144篇
  2022年   183篇
  2021年   312篇
  2020年   352篇
  2019年   300篇
  2018年   267篇
  2017年   291篇
  2016年   390篇
  2015年   274篇
  2014年   357篇
  2013年   702篇
  2012年   511篇
  2011年   461篇
  2010年   409篇
  2009年   494篇
  2008年   447篇
  2007年   525篇
  2006年   460篇
  2005年   480篇
  2004年   451篇
  2003年   344篇
  2002年   336篇
  2001年   243篇
  2000年   189篇
  1999年   175篇
  1998年   131篇
  1997年   99篇
  1996年   82篇
  1995年   119篇
  1994年   91篇
  1993年   79篇
  1992年   69篇
  1991年   39篇
  1990年   35篇
  1989年   23篇
  1988年   21篇
  1987年   25篇
  1986年   16篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   12篇
  1981年   5篇
  1980年   5篇
  1979年   9篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In this work two strategies for the synthesis of peroxidase silver conjugates for the qualitative and quantitative determination of immunoglobulins (IgG) to ixodid tick-borne borreliosis (ITBB) (Lyme disease) in human serum were proposed. The first approach for Ab-HRP@AgNP conjugate synthesis involved silver nanoparticles (Ag NPs) capped with a commercial peroxidase conjugate (Ab-HRP) by passive adsorption. The second strategy was based on the initial coupling of Ag NPs with human anti-species antibodies (Ab) by passive adsorption followed by the introduction of horseradish peroxidase (HRP) enzyme into the reaction mixture as a blocking reagent for Ab@AgNP@HRP conjugate synthesis. The formation of peroxidase silver conjugates was proved by UV/Vis spectroscopy and Transmission Electron Microscopy (TEM). The catalytic activity of Ab-HRP@AgNP and Ab@AgNP@HRP conjugates was evaluated by Michaelis-Menten kinetics. A commercially available 96-well microtiter plate with recombinant antigens to ITBB was used as a platform for immobilization of analyzed IgG. The HRP in Ab-HRP@AgNP conjugate was found to retain a sufficient level of activity for interaction with the H2O2 substrate to form an intensely colored reaction product. Therefore Ab-HRP@AgNP conjugate can be used in enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection of 3,3’,5,5’-Tetramethylbenzidine (TMB Ox) for quantitative determination of IgG to ITBB in human serum in the concentration range 12.5–800 ng ml−1 with LOD 2 ng ml−1. Ab@AgNP@HRP conjugate is recommended for the electrochemical determination of IgG to ITBB in human serum at LOD 3 ng ml−1 with registration of silver oxidation by linear sweep anodic stripping voltammetry (LSASV). Ag NPs in Ab-HRP@AgNP and Ab@AgNP@HRP conjugates do not change electrochemical activity during storage and can be used as an electrochemical label in LSASV method in case of HRP inactivation. The immunoassay based on peroxidase silver conjugates expands the analytical potential for the determination of IgG to ITBB especially during the period of increasing incidence.  相似文献   
72.
Trace metals are required in the body as they play a significant role in several biochemical processes. Moreover, certain heavy metals are beneficial at appropriate levels. Copper (Cu), for example, is essential for red blood cell formation, bone strength, and infant growth. Despite these fundamental roles, Cu can become toxic at high levels. Other heavy metals such as lead (Pb), cadmium (Cd), manganese (Mn), and mercury (Hg), have been identified to cause acute and chronic health complications. For these reasons, rapid, real-time quantification of such metals in biological media is of interest to improving human health outcomes. Electrochemical methods offer numerous advantages, such as portability, capability to be miniaturized, low cost, and ease-of-use. In this review, we examine recent developments in electrochemical sensing for the detection of heavy metals in biological media. To meet the requirements for inclusion in this review, the electrochemical sensor must have been evaluated in biological media (blood, serum, sweat, saliva, urine, brain tissue/cells). Several applications are explored to examine recent advancements in electrochemical sensing within these matrices. Addressing the challenges through materials, device, and system innovations, it is expected that electrochemical sensing of heavy metals in biological media will facilitate future diagnoses and treatments in healthcare.  相似文献   
73.
In this study, a novel strategy to amplify electrochemical signals by mesoporous PdPt nanoparticles with core-shell structures anchored on a three-dimensional PANI@CNTs network as nanozyme labels (PdPt/PANI@CNTs) was proposed for the sensitive monitoring of α-fetoprotein (AFP, Ag). First, the mesoporous PdPt nanoparticles prepared by a facile chemical reduction method had excellent biocompatibility with biomolecules, which could capture a large amount of AFP-Ab2 (Ab2) and exhibit plentiful pores to entrap more thionine (Thi) into mesoporous PdPt nanoparticles with enhanced loading and abundant active sites. Furthermore, the resulting mesoporous PdPt nanoparticles were abundantly dotted on the surface of a three-dimensional PANI@CNTs network with excellent conductivity and a high specific surface area through the bonding of the amino group to form PdPt/PANI@CNTs nanozyme labels. Most importantly, the as-prepared PdPt/PANI@CNTs nanozyme labels exhibited unexpected enzyme-like activity towards the reduction of hydrogen peroxide owing to the highly indexed facets, enhancing the current response to realize signal amplification. In view of the advantages of nanozyme labels and the involvement of gold nanoparticles (AuNPs, which behave as electrode materials) for the sensitive determination of AFP, the as-developed immunosensor could obtain a dynamic working range of 0.001 ng mL−1–100.0 ng mL−1 at a detection limit of 0.33 pg mL−1 via DPV (at 3σ). Furthermore, the nanozyme-based electrochemical immunosensor exhibited remarkable analytical performance, which brought about feasible ideas for disease diagnosis in the future.  相似文献   
74.
For sensitive analysis of cancer biomarker carcinoembryonic antigen (CEA), an amperometric sandwich-type aptasensor is proposed based on a signal amplification strategy of Au@Pt bimetallic nanoprobes. As the excellent catalytic activity to hydrogen peroxide (H2O2), core-shell Au@Pt nanoparticles are employed as nanoprobes by conjugating directly with the secondary aptamer of CEA (Apt-II). Due to the synergic recognition effect of dual aptamers and the excellent catalytic activity of nanoprobes, this amperometric sandwich-type aptasensor for CEA exhibits high specificity and good sensitivity with a limit of detection of 0.31 ng/mL, along with a wide linear range from 0.1 ng/mL to 100 ng/mL.  相似文献   
75.
3-dimensional (3D) Fe−Co−LDH/MXene composite was synthesized by in-situ synthesis and assembly of Fe−Co−LDH rod around MXene under hydrothermal condition. Due to the unique 3D configuration and good conductivity, the obtained Fe−Co−LDH/MXene modified glassy carbon electrode (Fe−Co−LDH/MXene/GCE) showed excellent electrochemical activity for As(III) detection. Via square-wave anodic stripping voltammetry, the response current on Fe−Co−LDH/MXene/GCE had good linear relationship with As(III) concentrations (1∼1000 ppt) with superior sensitivity (0.22 μA ppt−1 cm−2) and low detection limit (0.9 ppt). The mechanism of As(III) adsorption was demonstrated. The electrode showed excellent anti-interference ability. Real water sample analysis demonstrated the Fe−Co−LDH/MXene/GCE was deployable in aqua-system.  相似文献   
76.
A nanocomposite (Ho2O3NPs/BNT) was synthesized by decorating holmium(III)oxide nanoparticles (H2O3NPs) on bentonite (BNT) through a realizable sonochemical approach for the electrochemical detection of haloperidol (Hlp). A glassy carbon electrode was modified with this nanocomposite. The Ho2O3NPs/BNT modified electrode outperformed bare and other modified electrodes in terms of electrochemical performance for Hlp detection in a pH 8.0 phosphate buffer. The proposed electrochemical platform showed a wide linear range (0.01 μM–24 μM), low detection limit (2.4 nM), and high sensitivity by square wave voltammetry. In addition, the proposed electrochemical sensor met the clinical criteria in terms of stability, selectivity, and repeatability.  相似文献   
77.
吴炜星  王莹 《电化学》2023,29(1):2215004-46
由于巨大的潜在市场,乙烯的电化学氧化受到愈来愈多的关注。目前,主流的电化学氧化法仍以依赖于氧化还原媒介的介导氧化法为主,而这些媒介的使用在电解过程中产生大量的腐蚀性中间体,使其实际应用受到阻碍。直接电氧化法可有效规避此问题,但又受到低活性和低选择性的限制。在本工作中,我们针对目前最先进的钯催化直接氧化体系,在中性条件下开展了一系列电化学研究,以对该过程的机理获取更深入的认识。在氮气和乙烯氛围下,钯电极的循环伏安谱图有显著区别。我们发现电解过程中生成的Pd(Ⅱ)物种在乙烯氛围下可绕过原本的电化学还原路径,通过一个化学步还原为Pd(0),因此可能是乙烯氧化的活性位点。Pd(Ⅱ)物种所对应的还原峰也因此可作为乙烯吸附的数量的指标。通过电化学脉冲序列的设计,我们在钯催化剂上识别了两种具有不同吸附强度的乙烯,其强、弱吸附模式所对应的电荷转移比例约为0.3:1。弱吸附的乙烯在钯电极表面表现出可逆的吸脱附行为,而具有强吸附模式的乙烯无法通过物理过程脱附,可能指向到乙烯深度氧化过程。这项工作为进一步设计高性能乙烯直接电氧化催化剂提供了设计思路和方向。  相似文献   
78.
A platform based on praseodymium doped dysprosium oxide-carbon nanofibers modified electrode was constructed for the simultaneous determination of SY and TAR. SEM, EDX and XRD techniques were utilized for characterizing the proposed material. The voltammetric behaviour and properties of SY and TAR were gradually improved at materials in order from CNFs to Dy2O3−CNFs and Pr6O11@Dy2O3−CNFs. The working range was found to be 1.0×10−9–3.5×10−8 M and 1.5×10−9–4.0×10−8 M for SY and TAR, respectively. The value of LOD was 3.12×10−10 M and 5.35×10−10 M for SY and TAR, respectively. The platform (Pr6O11@Dy2O3−CNFs/GCE) was successfully applied to the electroanalysis of samples.  相似文献   
79.
We report heteroleptic ruthenium complexes of terpyridine (tpy) ligands with directly linked carboxylic acid anchors. These complexes feature methyl or methoxy-substituted 4′−Phtpy as donor ligands. We prepared these heteroleptic complexes from the ruthenium (II) precursor via a milder route to preclude the homoleptic complex formation. The donor−acceptor arrangement of tpy ligands in these ruthenium complexes renders visible light absorption giving metal and ligand-to-ligand charge transfer excitations at c.a. 490 nm. We evaluate the effect of the tpy donor substituents on the light-harvesting ability in Dye-Sensitized Solar Cells (DSSCs) and compare their photosensitizing ability with heteroleptic complexes bearing phenyl spacer at the acceptor end. Further, scrutinizing their photovoltaic performance, we studied their electron transfer kinetics in DSSCs using electrochemical impedance spectroscopy. This paper presents the structure-photosensitization relationship of these heteroleptic ruthenium complexes through a combined experimental and computational approach.  相似文献   
80.
The present study describes the simple and fast preparation of Cerium (III) hexacyanoferrate (II) (CeHCF) solid nanoparticles at three different water/formamide (%) ratios used as solvent (v/v) (100:0, 80:20, 0:100). CeHCF nanoparticles (Nps) were characterized by fourier transform infrared pectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potential and cyclic voltammetry (CV). Electrodes modified with CeHCF presented a well-defined redox pair with formal potential (Eo′) of approximately 0.29 V (vs. Ag/AgCl(sat) attributed to the Fe2 +/Fe3+ redox pair in the presence of cerium (III)). The Nps in the three systems investigates, presents a random size distribution to different surface, where most were distributed between 20 and 160 nm. Considering the three investigated systems, only CeHCF-1 (100:0) was sensitive to L-dopamine, presenting a linear signal region as a function of L-dopamine concentrations, with a limit of detection (LD) of 0.125 mmol L−1, limit of quantification (LQ) of 0.419 mmol L−1 and amperometric sensitivity (S) of 148.16 μA mmol L−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号